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Weak and strong n-doublings (n ~ N) are defined for an effect algebra P and 
the concept of a normal interval algebra is introduced. It is shown that the 
following statements are equivalent: (1) There is a morphism from P into an 
interval algebra. (2) P admits a tensor product with every finite chain. (3) P has 
a weak n-doubling for every n E N. Moreover, the following are equivalent: (4) 
P is a normal interval algebra. (5) P admits a strong tensor product with every 
chain of  length 2 n, n e N. (6) P has a strong n-doubling for every n ~ N. 
Finally, it is shown that if P possesses an order-determining set of states, then 
P is a normal interval algebra. 

1. ~ T R O D U C T I O N  

Effect algebras (or D-posets) have recently been introduced as an alge- 
braic structure for investigating the foundations of quantum mechanics (Catta- 
neo and Nisticb, 1985; Dvure~enskij and Pulmannovfi, 1994; Foulis and 
Bennett, 1994; Giuntini and Greuling, 1989; Greechie and Foulis, 1995; 
K6pka, 1992; K6pka and Chovanec, 1994; Navara and Ptfik, n.d.). This 
framework gives a unification of the operational (Davies, 1976; Davies and 
Lewis, 1970; Holevo, 1982; Kraus, 1983; Ludwig, 1983/1985) and quantum 
logic (Beltrametti and Cassinelli, 1981; Mackey, 1963; Varadarajan, 1968/ 
1970) approaches to quantum mechanics and yields a natural definition of a 
tensor product, a concept that is necessary for the study of combined physical 
systems (Davies, 1976; Dvure~enskij, 1995; Dvure~enskij and Pulmannovfi, 
1994; Foulis, 1989). Interval effect algebras (or interval algebras for short) 
form an important class of effect algebras (Bennett and Foulis, n.d.-a,b; Foulis 
et  al., 1994). These are effect algebras that are constructed from an initial 
interval in the positive cone of a partially ordered Abelian group. Besides 
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including most of  the common effect algebra examples, interval algebras 
encompass a powerful group-theoretic structure. 

In this paper, we introduce a class of interval algebras that we call 
normal interval algebras. This class is still broad enough to include most of  
the common examples. In particular, the physically important Hilbert space 
effect algebras are in this class. We show that there are two properties that 
characterize normal interval algebras. The first is that they admit a strong 
tensor product with any chain of  length 2", n E N. The second is that they 
possess doubling units that enable them to be iteratively doubled in size. We 
also weaken these properties to characterize effect algebras that admit a 
morphism into an interval algebra. 

A morphism from an effect algebra into the real unit interval is called 
a state or probability measure (Bennett and Foulis, n.d.-a; DvureEenskij and 
Pulmannovfi, 1994; Foulis and Bennett, 1994; Kraus, 1983; Navara and Ptfik, 
n.d.). States provide a mechanism for describing the statistical properties of  
a quantum system. We shall show that an effect algebra possesses a state if 
and only if it admits a tensor product with every finite chain. Moreover, we 
shall give a sufficient condition that an effect algebra is a normal interval 
algebra in terms of  the richness of its state space. 

2. DEFINITIONS 

This section collects some basic effect algebra definitions and results 
(Bennett and Foulis, n.d.-a; DvureEenskij, 1995; Foulis and Bennett, 1994; 
Greechie and Foulis, 1995). An effect algebra (P, ~), O, 1) (or simply P) is 
a s e t  P together with two distinct elements 0, 1 ~ P and a partial binary 
operation ~ :  D ----> P with domain D C_ P X P such that: (i) (a, b) ~ D 
implies (b, a) E D and b ~ a = a ~) b; (ii) (b, c) ~ D and (a, b ~ c) 
D imply (a, b) e D, (a ~) b, c) e D, and (a ~ b) ~9 c = a ~) (b �9 c); (iii) 
a e P implies there exists a unique a '  e P such that (a, a ' )  ~ D and a 
a '  = 1; (iv) (a, 1) e D implies a = 0. 

If (a, b) e D, we write a 2 b and we write a --< b if there exists a c 
E P such that a ~ c = b. It can be shown that a _1_ b if and only if a --- b' .  
Moreover, (P, --<, 0, 1, ') is a bounded poset such that a <- b implies that b' 
-< a '  and a" = a for all a ~ P. It follows from (ii) that we can write b = 
a~ ~) a2 �9 --- G) an without parentheses whenever it is defined. In this case, 
if ai = a, i = 1 . . . . .  n, and b is defined, we write b = na. 

For effect algebras P, Q, a map ~b: P ---> Q is said to be (i) additive if  
a Z b implies ~b(a) 2 ~b(b) and ~b(a �9 b) = d~(a) �9 dp(b); (ii) a morphism 
if ~b is additive and ~b(1) = 1; (iii) a monomorphism if ~b is a morphism and d~(a) 
• ~b(b) implies a _L b; (iv) an isomorphism if ~b is a surjective monomorphism. 
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Let P, Q, and R be effect algebras. A map 13: P • Q --+ R is a bimorphism 
if for every a ~ P, b E Q, 13(a, ") and 13(., b) are additive and 13(1, 1) = 1. 
A bimorphism 13: P • Q --+ R is strong on P(Q) if the morphism 13(., 1) 
(13(1,-)) is a monomorphism. If  13 is strong on P and Q, we say that 13 is strong. 

A simple example of an effect algebra is [0, 1] C R, where a l b if 
and only if a + b <- 1, in which case a ~) b = a + b. Another example is 
an n-chain 

Cn = {0, a, 2a . . . . .  na = 1} 

It is clear that any two n-chains are isomorphic, so we can assume that Cn 
is a sub-effect algebra of [0, 1] and that a = n -l .  A morphism d~: P ---> [0, 
1] is called a state and we denote the set of states on P by f~(P). If I~(P) =~ 
O, we call P stately and if f~(P) = O, we call P stateless. There are examples 
of stateless effect algebras (Greechie, 1971; Gudder and Greechie, n.d.). Also, 
[0, 1] and Cn are stately and their unique state is the identity function. A set 
of states S on P is order determining if s(a) <- s(b) for all s ~ S implies a 
- b .  

Let P, Q, and Tbe effect algebras and let "r: P • Q ---> Tbe a bimorphism. 
We call (T, -r) a tensor product of P and Q if (i) for any bimorphism 13: P 
X Q ---> R, there exists a morphism d~: T --+ R such that 13 = ~b o "r; (ii) every 
element of T is a finite sum of elements of the form x(a, b). The tensor 
product is unique to within an isomorphism if it exists. We then write T = 
P | Q, a'(a, b) = a @ b and say that P | Q exists. It can be shown that if 
P and Q admit a bimorphism or if P and Q are stately, then P | Q exists 
(Dvure~enskij, 1995; Dvure~enskij and Pulmannovh, 1994). However, there 
are effect algebras whose tensor product does not exist (Gudder and Greechie, 
n.d.). It is easy to show that C m ~ C n = Cmn, where im -1 | jn  -I  = ij(mn) - l ,  
i = 0, 1 . . . . .  m, j = 0, 1 . . . . .  n. If P @ Q exists and x is strong, we say 
that P @ Q is strong. 

Lemma 2.1. (i) If P and Q admit a strong bimorphism, then P | Q is 
strong. (ii) If fl(P) and 12(Q) are order,determining, then P | Q is strong. 
(iii) If I t(P | Q) is order determining and P tD Q is strong, then It(P) and 
It(Q) are order determining. (iv) If P @ Q exists and Q0 is isomorphic to a 
sub-effect algebra of Q, then P | Q0 exists. Moreover, if P @ Q is strong 
on P, then so is P | Q0. 

Proof. (i) Let 13: P • Q ---> R be a strong bimorphism. Since a bimorphism 
exists, P | Q exists. By the definition of a tensor product there exists a 
morphism d~: P | Q --> R such that {3(a, c) = ~b(a | c) for all a E P, c E 
Q. Suppose that a | 1 • b | 1. Then, since ~b(a | 1) • d~(b | 1), we 
have 13(a, 1) Z 13(b, 1). Since 13 is strong, we conclude that a • b. Similarly, 
if 1 | c • 1 | d, we have c • d. Hence, P | Q is strong. (ii) Suppose 
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I-I(P) and ~(Q) are order determining. For s ~ O(P), t e fI(Q), define the 
bimorphism [3s,t: P x Q ---) [0, 1] by 13s.t(a, b) = s(a)t(b). By definition of 
the tensor product there exists a morphism ~bs,t: P | Q --~ [0, 1] such that 

s(a)t(c) = 13~,t(a, c) = ~ , t (a  | c) 

for all a E P, c ~ Q. If a | 1 _L b | 1, then d~.t(a | 1) _L ~, t (b  | 1) for 
every s e ~(P), t E ~(Q). Hence, s(a) + s(b) --- 1, so s(a) <- s(b')  for 
every s E ~(P). Since I~(P) is order determining, we conclude that a L b. 
Similarly, if 1 | c _L 1 | d, then c • d. Hence, P | Q is strong. (iii) 
Suppose l"~(P | Q) is order determining and P | Q is strong. For s ~ ~ (P  
| Q), define the state lxs e ~(P) by ~ (a )  = s(a | 1). Suppose I~(a) -< 
~s(b) for every s E f l (P | Q). Then s(a | 1) --- s(b | 1) for every s E 
~ ( P  | Q) and since f l (P  | Q) is order determining, a | 1 -< b | 1. Hence, 

a t ~  1 < - b " |  1 = (b' | 1)' 

s o a |  L b ' |  1. S i n c e P |  w e h a v e a  •  We 
conclude that I~(P) is order determining. Similarly, I~(Q) is order determining. 
(iv) Let ~b: Q0 ---) Q be an isomorphism to a sub-effect algebra of Q. Define 
13: P • Qo ---) P | Q by 13(a, b) = a | ~b(b). Then clearly 13 is a bimorphism, 
so P @ Q0 exists. If 13(a, 1) _1_ [3(b, 1), then a @ 1 _1_ b | 1. Assuming that 
P | Q is strong on P, we have a • b. Hence, 13 is strong on P and it follows 
from Part (i) that P | Q0 is strong on P. �9 

Let G be an additively written, partially ordered Abelian group (Bennett 
and Foulis, n.d.-a; Fuchs, 1963; Goodearl, 1986). Let u ~ G with u > 0 and let 

P =  G§ u] = {g ~ G:0--<g--<u} 

Then P can be organized into an effect algebra (P, ~ ,  0, u) by defining a 
b if and only if a + b -< u, in which case a ~ b = a + b. In the effect 
algebra P we have a '  = u - a and the effect algebra partial order on P 
coincides with the restriction to P of the partial order on G. An effect algebra 
of the form (7+[0, u] (or isomorphic to an effect algebra of this form) is called 
an interval effect algebra or, for short, an interval algebra. Notice that [0, 
1] = R+[0, 1] and Cn = Z§ n] are interval algebras. Since an interval 
algebra is stately (Bennett and Foulis, n.d.-a), an effect algebra admits a 
morphism into an interval algebra if and only if it is stately. 

If (P, ~9, 0, 1) is an effect algebra and 0 :/: u ~ P, let 

P[0, u] = {a ~ P : 0 < - - a - <  u} 

Then (P[~ u], ~), 0, u) is an effect algebra, where a ~) b is defined if and 
only if a ~) b -< u, in which case a ~) b = a ~) b. Finally, if Pi, i = 1 . . . . .  
n, are effect algebras, it is easy to show that their Cartesian product P1 X 
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�9 .. • P ,  is an effect algebra with its componentwise partial operation (Bennett 
and Foulis, n.d.-a; Foulis et al., 1994). 

3. T E N S O R  CHAIN ALGEBRAS 

An effect algebra P is a tensor chain algebra if P | Cn exists for every 
n E N .  

Lemma 3.1. An effect algebra P is a tensor chain algebra if and only if 
P | Cn exists for every n ~ I, where I C_ N is infinite. 

Proo f  Suppose that P | C, exists for every n e I, where I C_ N is 
infinite. Let m ~ N and let n e I with m --< n. Defining 

~: P • Cm --~ P ~ Cn[O, l ~ mn -1] 

by f3(a, j m  - l )  = a | j n  -1, we see that 13 is a bimorphism. Hence, P | 
C,, exists. �9 

Suppose that P | C~ exists for every n ~ I, where I C N is infinite. 
We say that 

a l | 1 7 4  - l  E P |  

where n e I is I-irreducible if al | m -1 ~) "'" @) a.  | m - l  is not defined 
f o r m  E I w i t h m < n .  

Lemma 3.2. If P | C. exists for every n e L where I C N is infinite, 
then for every a i e  P, i = 1 . . . . .  j ,  there exists a unique m e I such that 
al | m -1 ~) "'" ~) aj @ m - 1  is/-irreducible. 

Proo f  Assume the hypothesis of  the lemma and let a; e P, i = 1 . . . . .  
j. If n ~ I w i th j  -- n, then al | n - i  ~) "'" G) aj ~ n -I  is defined in P | 
C.. Indeed, applying the effect algebra axioms, we have 

1 | j n - I  ~___ 1 r n-1 ~ . . .  @ 1 ~ n- i  (j  summands) 

= [al ~ n -I ~ a[ r n - l ]  ~) . . .  ~ [aj t~ n -1 ~) a} | n - l ]  

Since am | n -1 ~) "'" ~) aj ~ n -1 is a subsum of the right side, this sum is 
defined (Dvurefienskij, 1995; Foulis and Bennett, 1994). Letting m be the 
smallest integer in I such that ai | m -1 ~) " "  �9 aj | m -1 is defined, we 
have the result. �9 

Theorem 3.3. An effect algebra P admits a morphism into an interval 
algebra if and only if P is a tensor chain algebra. 

Proo f  If P admits a morphism into an interval algebra, then P is stately. 
Hence, P is a tensor chain algebra. Conversely, suppose P is a tensor chain 
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algebra. Let  Aj = P | C2J, j e J = {0, 1, 2 . . . .  } and notice that A0 = P. 
Let I = {2J: j e J} and define 

F = {a e UAj: a is / - i r reducible} 

F o r a  = al | 2-m G . . .  @ aj | 2 -m, b = bl | 2-n ~ " "  @ bk | 2 -n 

F, we define a + b = c, where 

c = at |  "'" ~ a j ~ 2 - r ~ b l  |  "'" O b k |  -r  

is/- irreducible.  Then P C F, + is a commutat ive binary operation on F and 
0 e P is an additive identity. Moreover,  it is easy to show that + is associative, 
so (F, + ,  0) is a commutat ive monoid. I f  a + b = 0, then a, b E P and a 

b = 0. Since P is an effect algebra, it follows that a = b = 0. 
For  a, b e F as given previously, we write a ~ b if  

a ~ | 1 7 4 1 7 4  -r (1) 

for some r ~ J. It is clear that - is reflexive and symmetric.  Now, if  (1) 
holds, then it follows f rom properties o f  the tensor product that (1) holds 
with r replaced by p, where r - p. This observation makes it clear that 
is transitive, so --  is an equivalence relation. Moreover,  this observation 
enables us to show that a --  c, b ~ d implies that a + b ~ c + d, so ~ is 
a congruence relation. We denote the equivalence class containing a ~ F by 
[a] and we let f = {[a]: a ~ F}. Since ~ is a congruence relation, we have 
a well-defined operation + on P given by [a] + [b] = [a + b]. It also 
follows that {F, + ,  [0] } is a commutat ive monoid.  I f  [a] + [b] = [0], then 
[a + b] = [0] = {0} .Hence ,  a + b = 0, s o a  = b = 0 a n d [ a ]  = [b] = 
[0]. Thus, { f ,  + ,  [0]} is a positive, commutat ive  monoid.  

Now suppose that [a] + [b] = [a] + [c], so [a + b] = [a + c]. We 
conclude that there exists an r E J such that 

al ~ 2-r  ~ "'" ~ a j |  2-r  ~ bt | 2--r ~ "'" 0 b~ | 2 -r  

= al @ 2 - r ~  "'" ~ a j @ 2 - r ~ c l  @2-rE]~ "'" ~ c i @ 2  -r 

Applying the cancellation law for effect algebras (Foulis and Bennett, 1994), 
we conclude that 

bl | 2 -r  ~ "'" @ bk @ 2 -r = Ca | 2 -r  ~ "'" 0 ci | 2 -~ 

Hence, b ~ c, so [b] = [c]. Hence, {F, + ,  [0]} is a positive, cancellative, 
commutat ive monoid.  It follows f rom Birkhoff ' s  theorem (Birkhoff, 1942; 
Fuchs, 1963) that {F, + ,  [0]} can be enlarged to a partially ordered Abelian 
group (G, + ,  0) that has f as its positive cone. Corresponding to 1 e P, let 
u = [1]. For a E P, since [a] + [a ' ]  = [1], we have 

0 = [0] --< [a] --< [1] = u  
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Hence,  [a] E G§ u] and we define do: P ~ G§ u] by do(a) = [a]. Then 
do(l) = [1] = u and if  a, b e P with a _L b, we  have 

do(a ~ b) = [a ~ b] = [a + b] = [a] + [b] = do(a) G d0(b) 

Therefore,  do is a morph i sm f rom P into the interval a lgebra G+[0, u]. �9 
We conclude f rom L e m m a  3.1 and T h e o r e m  3.3 that if  P is stateless, 

then P | C,  does not exist for  all but finitely many  n e N.  This  general izes 
some results in Gudder  and Greechie  (n.d.) and shows that there are m a n y  
examples  of  pairs o f  effect  algebras that do not admit  a tensor product.  

L e m m a  3.4. For effect  algebras Pi,  i = 1 . . . . .  n, their Cartesian product  
P~ • " . -  • P ,  is an interval a lgebra if and only if each P / i s  an interval 
algebra,  i = 1 . . . . .  n. 

P r o o f  It is well  known that the Cartesian product  o f  a finite number  of  
interval algebras is an interval algebra (Bennett  and Foulis, n.d.-a; Foulis et  
al. ,  1994). Conversely,  suppose that P~ • - . -  • P ,  is an interval algebra.  
Then there exists an i somorphism do: PI • " ' "  • P ,  ---> G+[0, u] for  some 
partially ordered Abelian group G. Letting v = do(l, 0 . . . .  , 0 ) ,  we  have  

do(0 . . . . .  0 )  = 0 <  v < u = do(l  . . . . .  1) 

For  a E Pl ,  we have 

0 -< do(a, 0 . . . . .  0) --< do(l, 0 . . . . .  0) = v 

Define  the mapping  ~: P1 ---> G+[0, v] by t~(a) = do(a, 0 . . . . .  0). Then  
clearly, ~ is a monomorph i sm.  I f  g ~ G+[0, v], then g = do(a1 . . . . .  a , )  for  
some ai ~ P~, i = 1 . . . . .  n. Since 

do(al . . . . .  an) < v = do(l, 0 . . . . .  0) 

we  have (al  . . . . .  a , )  < (1, 0 . . . . .  0), so ai = O, i = 2 . . . . .  n. Hence,  g 
= do(al, 0 . . . . .  0) = ~ ( a 0 ,  so ~J is surjective. Therefore,  ~ is an i somorphism.  
It  fol lows that PI is an interval a lgebra and in a similar way, Pz . . . . .  Pn are 
also interval algebras. �9 

L e m m a  3.5. For effect  algebras P1 . . . . .  P , ,  we have s E II(P1 • "-" 
• P , )  if  and only if s has the fo rm 

s(al  . . . . .  a , )  = ~ kj(i)p~j~i)(aj~i)) 
i=l 

where i~j<i) E fI(Pj<o), kjo ~ > O, i = 1 . . . . .  m,  and ~m= l kj(/) = 1. 

P r o o f  Suppose s: PI • " ' "  • Pn --~ [0, 1] has the above form. Then 

s(1) = s(1 . . . . .  1) = X ~kJ(i)~LJ(i)(1) -~ X Xj(i) = 1 



1092 Gudder 

Moreover ,  if  (at . . . . .  an) 3_ ( b l  . . . .  

we have 
, b.),  then a i I bi, i = 1 . . . . .  n, and 

s((al  . . . . .  a . )  ~ (bl . . . . .  b. ) )  = s (a l  �9 bl . . . . .  a .  ~ b . )  

= ~ hj(oixj(i)(aj(i) ~ bj(o) 

---- ~ hj(i)ixj(i)(aj(i)) + ~ hj(i)ixj(i)(Oj(i)) 

= s(a l  . . . . .  a . )  + s (b l  . . . . .  b . )  

Hence,  s ~ II(P1 • " ' "  • P.) .  Conversely,  suppose s ~ l ' l(Pl • " ' "  • pn). 
Let  hi = s(O . . . . .  O, 1, 0 . . . . .  0), where 1 appears  in the ith componen t  
and let j ( i ) ,  i = 1 . . . . .  m,  be the indices such that hi( o :/: O. Define IXyo): 
PJ(o -> [0, 1] by 

Ixj(o(a) = h~,~s(O . . . . .  O, a, 0 . . . . .  O) 

where a appears  in t h e j ( i ) t h  component .  Then IXj(0(1) = 1 and if  a, b ~ Pj(i) 
with a 3_ b, we have 

Ixj(o(a ~ b) = h~,~s(O . . . . .  O, a �9 b, 0 . . . . .  O) 

= h~,][s((O . . . . .  O, a, 0 . . . . .  O) q~ (0  . . . . .  O, b, 0 . . . . .  0))]  

= h~,]s(O . . . . .  O, a, 0 . . . . .  O) + h~i[s(O . . . . .  O, b, 0 . . . . .  O) 

= Ixy(o(a) + Ixj(i)(b) 

Hence,  pq(/) E ~(Pj(,~), i = 1 . . . . .  m. Moreover ,  since hi = 0 implies  s(O, 
. . . .  O, a, 0 . . . . .  O) = 0 for  every a E Pi ,  we have  

s(a l  . . . . .  an) = s( (al ,  0 . . . . .  O) ~ . . .  �9 (0 . . . . .  O, a . ) )  

= s(al ,  0 . . . . .  O) + "" + s(O . . . . .  O, a . )  

= ~ hj(i)~j(i)(aj(o) �9 

The fol lowing corollary shows that Theorem 3.3 cannot  be strengthened 
to prove that a tensor chain algebra is an interval algebra. 

Coro l lary  3.6. There  exist tensor chain algebras that are not interval 
algebras. 

P r o o f  L e t  P, Q be effect algebras where P is stateless and Q is stately. 
Applying  L e m m a  3.5, we have I ) ( P  X Q) = ~ ( Q )  in the sense that s 
O ( P  • Q) if  and only if  s(a,  b) = Ix(b) for  some Ix E I~(Q). Hence,  P • 
Q is stately, so P • Q is a tensor chain algebra. I f  P • Q were an interval 
algebra, it would follow f rom L e m m a  3.4 that P is an interval algebra, which 
is a contradiction. �9 
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Corollary 3.6 shows that there exist many stately effect algebras that 
are not interval algebras. For example, let P be stateless and suppose fI(Q) 
is order determining. Then I-I(P • Q) = [~(Q), so P • Q has a large supply 
of states, but P • Q is not an interval algebra. Notice, however, that f l (P  
• Q) is not order determining, because s(a, 0) = 0 for every a E P, s 
[ l (P  X Q). 

Let C = {j2-":  n,j  e N U {0},j  <- 2~}. Then C is a sub-effect algebra 
of [0, 1] and C :  is a sub-effect algebra of C for every n ~ N. The next 
result follows from Lemma 2.1(iv) and gives further characterizations of  
tensor chain algebras. 

Corollary 3.7. For an effect algebra P, the following statements are 
equivalent. (i) P is stately, (ii) P | [0, 1] exists, (iii) P | C exists, (iv) P 
is a tensor chain algebra, (v) P admits a morphism into an interval algebra. 

4. D O U B L I N G  TENSOR CHAIN A L G E B R A S  

An effect algebra P is a doubling tensor chain algebra if P | C2 n exists 
for all n ~ N and is strong on P. This section shows that a doubling tensor 
chain algebra is an interval algebra. 

Lemma 4.1. If P ~ Cn exists, then P @ Cn is strong on C~. 

Proof Suppose that 1 
> n. Then there exists a k 
Now k <-- i or k --< j,  since 

n +  

t~ in -l  • 1 <~ jn-2. We now assume that i + j 
N w i t h 0 < k - - < n s u c h t h a t i + j =  n + k. 

otherwise i, j < k and we have 

k = i + j < 2 k < _ n + k  

which is a contradiction. Without loss of generality, assume that k <-- j .  Then 

1 @ / ~ )  l ~ J =  1 ~ / ~ )  1 |  1 @ k  = 1 |  1~3 1 ~  k 
n n n n n n 

This implies that 1 | kn -l  = 0 and since 1 @ n -~ -< 1 @ kn -~, we have 1 
| n-~ = 0. But then for n summands we have 

1 |  = l | 1 7 4  - l = 0  

which is a contradiction. Hence, i + j -< n, so in -~ L jn -l in C,. �9 

This last lemma shows that if P is a doubling tensor chain algebra, then 
P | C2, is strong for all n ~ N. An interval algebra G+[0, u] is normal if 
a ~ G + satisfies 2ha --< 2nu for some n E N, then a <- u. We call G§ u] 
regular if a, b ~ G+[0, u] satisfy a _1_ a, b L b, then we have a _1_ b. 

Lemma 4.2. If G+[0, u] is normal, then it is regular. 
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Proof. Suppose a, b E G§ u] satisfy a • a, b _1_ b. Then 

2(a + b )  = 2 a + 2 b - < u + u = 2 u  

Since G+[0, u] is normal, we have a + b ----- u. Hence, a • b, so G+[0, u] 
is regular. �9 

Most of the common interval algebras are normal. For example, C,, [0, 
1], and Hilbert space effect algebras (Foulis and Bennett, 1994; Greechie 
and Foulis, 1995) are normal. In fact, we shall show that if f~(G§ u]) is 
order determining, then G§ u] is normal. However, the diamond D = {0, 
a, b, 1 }, where 2a = 2b = 1 and a Z b, is an interval algebra (Bennett and 
Foulis, n.d.-a; Foulis et al., 1994), which clearly is not regular. Hence, by 
Lemma 4.2, D is not normal. 

Theorem 4.3. An effect algebra is a doubling tensor chain algebra if and 
only if it is a normal interval algebra. 

Proof. Let P be a doubling tensor chain algebra. We proceed as in the 
proof of  Theorem 3.3, where we showed that d~: P ~ G§ u] is a morphism, 
where d~(a) = [a]. We now show that ~b is an isomorphism. Suppose that a, 
b e P with d~(a) _L ~b(b). Then [a] + [b] <-- [1], so there exists a 

C = C 1 @ 2 - m @  "'" @ C j ~ 2  -m E F 

such that [a + b + c] = [a] + [b] + [c] = [ 1 ]. Hence, for some r E J, we have 

a @ 2 - r @ b @ 2 - r @ c l @ 2 - r @ . . . @ C j @ 2 - r =  1 @ 2  -r  

Summing this equation 2 r times gives 

a ~ l ~ b ~ l ~ c l |  = 1 |  

Hence, a @ 1 _L b | 1 and since P @ C2, is strong on P, we have a • b. 
Thus, ~b is a monomorphism. To show that ~b is surjective, suppose 0 -< [c] 
-< [1], where c has the previous form. Then there exists a 

d = dl ~ 2-"  ~) " "  ~) dk r 2 -"  E F 

such that [c + d] = [c] + [d] = [1]. Hence, for some r e J, we have 

Cl @ 2-"  ~) ..  . ~) cy @ 2-r  ~) dl @ 2-~ ~) . . . ~) dk @ 2 -r = 1 @ 2 - "  

Summing this equation 2 r times gives 

C l @ l ~ ) ' " ~ ) c j @ l ~ ) d l @ l ~ ) ' " O d k @ l  = l @ l  

As before, we conclude that Cl _L c2. Hence, 

cl | 1 (3 . "  ~) cj | 1 -- (cl ~) c2) | 1 ~) . . .  E) cj @ 1 
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Continuing by induction, it follows that c 1 ~) ~176 ~) Cj is defined. Since c is 
irreducible, we have 

C : C I ( ~ ' ' "  ~ C j  E P 

Hence, [c] = ~(c), so ~ is surjective and r is an isomorphism. We next 
show that G+[0, u] is normal. Suppose [c] ~ G + = F and 2P[c] --< 2 p [1] for 
some p E N. Then there exists a d E F of the previous form such that 2 p 
[c] + [d] = 2P[1]. Hence, for some r E J, we have 

2PCl t~ 2 -r  ~) . . .  ~) 2PCj ~ 2 -r  ~) dl ~ 2 -r E~) "'" ~) d k ~ 2 - r  = 2Pl | 2 -~ 

It follows that p --< r and 

c l |  - ~ ) ' ' ' O c j ~ 2 p 2  - ~ O d l @ 2  - ~ O " ' ' O d ~ @ 2  - ~ =  1@2P2 -~ 

Summing this equation 2 r-p times gives 

cl @ l ~ " "  ~) cj @ l ~) dl @ 2r-p2-~ ~ " " ~ dk ~ 2r-P2 -~ = 1 |  

As before, we conclude that c E P, so [c] --< [1] and G§ u] is normal. 
Conversely, let G§ u] be a normal interval algebra and let t~: P --~ 

G§ u] be an isomorphism. For n E N, it is clear that G§ 2"u] is an 
interval algebra. Define the bimorphism 13: P • C2, ---> G§ 2~u] by 13(a, 
j 2  -~) = jO(a). Suppose that 13(a, 1) I [~(b, 1). Then [3(a, 1) ~ [3(b, 1) is 
defined so 2~ff(a) ~) 2"0(b) is defined in G§ 2"u]. Hence, ~(a) ~) ~(b) is 
defined in G+[0, 2~u] and we have 

2"(*(a) ~) ~(b)) = 2nO(a) ~) 2"O(b) --< 2"u 

Since G+[0, u] is normal, we have , ( a )  ~) , (b )  -- u. It follows that , ( a )  _1_ 
~b(b) in G§ u]. Since ~b is an isomorphism, we conclude that a _1_ b, so [~ 
is strong on P. Applying Lemma 2.1(i), it follows that P | (?2, is strong on 
P. Hence, P is a doubling tensor chain algebra. �9 

The following result strengthens a theorem in Bennett and Foulis (n.d.-a). 

Corollary 4.4. If I)(P) is order determining, then P is a normal inter- 
val algebra. 

Proof. This follows from Lemma 2.1(ii) and Theorem 4.3. �9 

The converse of Corollary 4.4 does not hold. For example, the nonstan- 
dard unit interval *[0, 1] is a normal interval algebra. However, fl(*[0, 1]) 
contains only one element and this state vanishes on the infinitesimals. 

5. DOUBLINGS 

Let (P, @, 0, 1) be an effect algebra and suppose there exists a u E P 
such that 2"u = 1 for some n E N. If an effect algebra Q admits a morphism 



1096 Gudder 

into P[0, u], we call P a weak n-doubling of Q and if Q admits an isomorphism 
onto P[0, u], we call P an n-doubling of Q. Moreover, we call u an n-doubling 
unit if 2"a exists implies a --< u. Finally, if Q admits an isomorphism onto 
P[0, u], where u is an n-doubling unit, we call P a strong n-doubling of Q. 
If n = 1, we refer to these as (weak, strong) doublings. Doublings have been 
previously considered in Bennett and Foulis (n.d.-b). 

If Q = G+[0, u] is an interval algebra, then G§ 2"u] is an n-doubling 
of  Q, so every interval algebra admits an n-doubling for every n e N. 
However, the next result shows that an interval algebra need not admit a 
strong n-doubling. 

Theorem 5.1. For an effect algebra Q, the following statements are 
equivalent. (i) Q is a normal interval algebra. (ii) Q admits a strong n-doubling 
for every n ~ N. (iii) Q is a doubling tensor chain algebra. 

Proof To show that (i) implies (ii), let G§ u] be a normal interval 
algebra. If a, 2"a ~ G+[0, 2"u], then 2"a --< 2"u. Since G§ u] is normal, a 
<- u. Hence, u is an n-doubling unit, so G+[0, 2"u] is a strong n-doubling of 
G§ u]. If Q is isomorphic to G§ u], we conclude that Q admits a strong 
n-doubling for every n E N. To show that (ii) implies (iii), suppose dp: Q 
---> P[0, u] is an isomorphism, where u is an n-doubling unit. First notice 
that if c E P[0, u] and j ~ N with j <--- 2", then jc is defined in P. Indeed, 
since c (~ c' = u, we have 

2"c ~ 2nc' = 2n(c O C') = 2"U = 1 

Hence, 2"c is defined, so jc is also defined in P. It follows that the map 13: 
Q x (72- --) P given by 13(a, j2-n) = jd~(a) is well defined. Since 13 is a 
bimorphism, Q | C 2" exists. Suppose that 13(a, 1) _L 13(b, 1). Then 13(a, 1) 

13(b, 1) is defined, so 

2"(~b(a) ~ ~b(b)) = 2"+(a) E) 2"~b(b) 

is defined in P. Since u is an n-doubling unit, we have d~(a) ~ dp(b) -< u, so 
dp(a) _L ~b(b) in P[0, u]. Since ~b is an isomorphism, a _L b, so 13 is strong 
on Q. Applying Lemma 2.1(i), we conclude that P | Cz, is strong on P. 
Hence, Q is a doubling tensor chain algebra. That (iii) implies (i) follows 
from Theorem 4.3. �9 

We now study the relationship between chain tensor products and weak 
n-doublings. 

Theorem 5.2. If P | Cz, exists, then P | Cz, is a weak n-doubling of 
P. Conversely, if a weak n-doubling of P exists, then P | C2, exists. 
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Proof. Suppose that P | (72. exists and let u = 1 | 2-" E P | (72.. Then 

2 " u = l |  E P I C 2 .  

Let Q = P | C2,[0, u] and define (b: P --> Q by (b(a) = a | 2-". Notice 
that a | 2-" < u, so indeed (b(a) ~ Q. Moreover, P | C2, is an n-doubling 
of Q. To show that (b is a morphism, we have (b(1) = 1 | 2-" = u. Now 
suppose that a, b e P with a 3- b. Then a | 2-" 3- b | 2-% so (b(a) l 
(b(b) in P | C2,. Also, 

(b(a) ~ ~b(b) = a | 2 - "  O b | 2 -n = (a O b) | 2 -"  <- 1 |  = u 

Hence, (b(a) 3_ (b(b) in Q and 

(b(a �9 b) = (a �9 b) | 2 -n  = ~b(a) G ~b(b) 

Therefore, (b is a morphism, so P | C2, is a weak n-doubling of P. 
Conversely, suppose Q is a weak n-doubling of P. Then there exists a 

morphism (b: P ---> Q[0, u] where nu = 1. Define [3: P X Cz, --> Q by [3(a, 
j2-")  = j(b(a). Proceeding as in the proof of Theorem 5.1, we conclude that 
[3 is a bimorphism. Hence, P | C2, exists. �9 

Corollary 5.3. For an effect algebra P, the following statements are 
equivalent. (i) P is a tensor chain algebra, (ii) P admits a weak n-doubling 
for all n e N, (iii) P admits a morphism into an interval algebra. 

A C K N O W L E D G M E N T  

The author thanks David Foulis for some useful discussions on this 
topic and for posing some problems that this article addresses. 
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